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Research Statement

1 INTRODUCTION

My research involves understanding algebraic and geometric structures, especially those found quantum field the-
ories (QFTs). Throughout my PhD I have focused particularly on the 3d mirror symmetry of topologically twisted
supersymmetric QFTs. In addition to this, I am also interested in understanding other duality phenomena such as
holography and the geometric Langlands program. Mathematically, this has involved subjects including infinite-
dimensional and non-semisimple representation theory; deformation quantization; vertex, KLR and factorization
algebras; and symplectic singularities.

In Sections [2] I provide a brief introduction to 3d mirror symmetry and some background regarding boundary
VOAs and line operators. In Section [3]I provide overviews of two papers:

e Section summarises [SW24], a project with Ben Webster using cylindrical KLRW algebras to compute a
tilting generator for 7*Gr(2,4) which is the resolved Coulomb branch of a quiver gauge theory.

e Section summarises [FS24], a project with Andrea Ferrari proving that the boundary VOA of the A-twist
of super quantum electrodynamics (SQED) is the simple quotient of the psl{(N|N) affine vertex superalgebra
and that the associated variety of this VOA is the minimal nilpotent orbit of s[(N') which is the Higgs branch
of SQED.

In Section [4] I outline two projects I am currently working on:

e Section in joint work with Andrea Ferrari and Chris Beem we investigate deformations of SQED by a
flat connection. In particular we study the boundary VOA, its associated variety and its module category.

e Section[f.2} in this project I construct sheaves of VOAs on BFN Coulomb branches using a presentation given
in |[BF23b]. The global sections of these sheaves should correspond to 3d boundary VOAs and I conjecture
they satisfy a duality property between their Zhu Cs-algebra and derived endomorphism algebra.

In Section [5] I outline some future projects I am interested in investigating:
e Section [5.1} a method for computing quantum cohomology using the chiral de Rham complex.

e Section [5.2} investigating Koszul duality for chiral algebras and applications to the twisted holography pro-
gram.

2 BACKGROUND

2.1 3d MIRROR SYMMETRY

3d mirror symmetry is most often studied as a duality between symplectic varieties known as the Higgs branch and
Coulomb branch. Physically, these spaces are branches of the moduli space of vacua for 3d topological field theories
(TQFTs) and contain information about the algebras of operators for these theories. These varieties are typically
singular and are equipped with resolutions whose theory generalizes that of the Springer resolution T*(G/B) — N.
It is for this reason that Okounkov said “Symplectic resolutions are the Lie algebras of the 21st Century”. Some
notable examples of dual pairs is provided in Figure

Symplectic resolution | Symplectic dual
TP C2/Znsq
T*(G/B) T*(G/BY)
hypertoric varieties Gale dual hypertoric varieties
ADE quiver varieties affine Grassmanian slices

Figure 1: Some examples of symplectic dual pairs. G is an algebraic group and GV denotes the Langlands dual
group of G.

Symplectic duality is conjectured to interchange different algebraic and geometric data; for example one can
associate a category O to a symplectic singularity and the duality interchanges this with the Koszul dual category
O' [Web19b|. For a more comprehensive overview of the subject, see the survey papers [Kam22; WY23]|.



Aiden Suter aidensuter@outlook.com

2.2 PHYSICAL CONTEXT, VERTEX ALGEBRAS AND OPEN CONJECTURES

A promising way to explore 3d mirror symmetry is through a conjectured relationship between vertex operator al-
gebras (VOASs) constructed from the boundary data of the twisted theories and their Higgs and Coulomb branches
[CCG18; |CG1Y|]. The boundary VOA arises by fixing holomorphic boundary conditions that support local operat-
ors forming a VOA, analogous to the correspondence between Chern-Simons theories and boundary conformal field
theories.

For the A-twist of a theory with gauge group G, the boundary VOA is given by a gauged Svy-system VOA. One
should think of the Sy VOA as being the chiraﬂ analogue of the Weyl algebra of differential operators and the bc
VOA as being the chiral analogue of the exterior algebra of differential forms. For this reason a sheaf of v VOAs
on a space X is known as the chiral differential operators (CDOs) of X and a sheaf of 8y ®bc VOAs on X is known
as the the chiral de Rham complex (CDRs) of X.

The A-twist boundary VOA can be obtained as the global sections of the CDOs or CDRs for a quotient stack
W/G, where we take W to be a G-representation. The BRST cohomology of v @ bc™V with respect to g = Lie(G)
corresponds to taking the global sections of a sheaf of CDRs on the symplectic reduction T*W J G. It was posited
in [CCG18] that a non-semisimple tensor category of modules for the boundary VOA corresponds to D-modules on
the loop space L(T*W/G) which describes the line defects of the A-twist. Local operators of the A-twist describe
the functions on the Coulomb branch and these can be recovered as endomorphisms of the trivial defect.|[BFN19).
This reasoning leads to the following conjecture:

Conjecture 1 ([CCG18|). Let V be the boundary VOA for the A-twist of a 3d N' = 4 gauge theory and let C
denote a particular non-semisimple subcategory of V.— mod. Then the Coulomb branch algebra is isomorphic to
Exte(V, V).

In 4d N' = 2 superconformal QFTs there is a construction of a characteristic VOA whose associated variety
recovers the Higgs branch of the theory. One can compactify such a theory to obtain a 3d A/ = 4 theory with the
same Higgs branch. This leads to a 3d mirror conjecture:

Conjecture 2. [BF23d] Let V be the boundary VOA for the A-twist of a gauge theory with purely free fermionic
boundary degrees of freedom. Then the Higgs branch is isomophic to Xy .

Proving these conjectures is an attractive prospect as it provides a systematic method for constructing both
sides of the duality from a single algebraic object. In recent work [Bal423] Conjecture [I| was proved in the case
that G is abelian and the mirror symmetry was verified at the level of module categories. However many technical
difficulties remain in proving this statement for the non-abelian case. In Section [3.2]I provide a summary of recent
work with Andrea Ferrari where we proved Conjecture [2| for the case of super quantum electrodynamics (SQED).
In Section [I]I discuss ongoing work towards understanding the non-abelian cases for both conjectures.

3 RECENT WORK

3.1 TILTING GENERATOR FOR THE T*Gr(2,4) COULOMB BRANCH

As suggested in Section[2.2] the (derived) category of line defects for the twisted theory is described by the (derived)
category of coherent sheaves on the Coulomb branch. In [SW24], my advisor and I studied this category for the
quiver gauge theory associated to the quiver seen in Figure Which has (resolved) Coulomb branch T*Gr(2,4). Our
goal was to provide a concrete algebraic description of the derived category of coherent sheaves D% | (T*Gr(2,4)).

l

2

Figure 2: The framed quiver determining the gauge and matter content for the quiver gauge theory with resolved
Coulomb branch T*Gr(2,4).

1We use adjective “chiral” here to mean the vertex algebra analogue of that object.
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We achieved this using techniques for studying non-commutative resolutions of symplectic varieties over fields of
characteristic p > 0 developed in [BK07]. Given a non-commutative resolution R of a symplectic variety X, it was
shown in [Kal06|] that there exists a coherent sheaf & called a tilting generator such that R = End(£) and provides
an equivalence of derived categories

DP,,.(X) = D’(R—mod"®)
F — RHom(E, F).

In [Web19a] these methods were used to show that any BEN Coulomb branch 9t has a non-commutative resolution
A with tilting generator Z such that for any BFN resolution 9T — 9t there is a derived equivalenc

DY, (M) = D’(A—mod'®). (1)

coh

In the sequel [Web22] it was shown that if the Coulomb branch is that of a quiver gauge theory, then A is a
cylindrical KLRW algebra, a type of diagrammatic algebra generated by string diagrams on a cylinder.

1 2 3
T
L 1 2 3

Figure 3: Examples of cylindrical KLRW diagrams. The left diagram is an element of the algebra A while the
right diagram is an element of an A-module labelled by the idempotent 223221. The colours and labels indicate the
quiver data that a strand corresponds to and action of the algebra is given by stacking diagrams from the top.

The aforementioned constructions however are not explicit and so a major motivation of this project was to
provide a concrete construction of the tilting generator Z for D2, (T*Gr(2,4)). This was achieved by exploiting the
geometry of Gr(2,4), and constructing six modules for the KLRW algebra A corresponding to idempotents labelled
by strings of quiver vertices. These modules were identified with coherent sheaves on Gr(2,4) as summarised in

Table [l

Coulomb branch sheaf | KLRW idempotent | Grassmanian sheaf
Z 212232 @
2, 22123 L1
Z3 221322 HRL
Zy 222312 H
25 223221 T+
Zg 221223 T

Figure 4: Table showing the coherent sheaves on T*Gr(2,4) corresponding to KRLW algebra modules. The idem-
potent labels indicate the order of the strands appearing in the KLRW diagrams for that module. £ is the unique
ample line bundle generating the Picard group of T*Gr(2,4), T denotes the tautological bundle on Gr(2,4) and
L72 — H — O is a unique non-trivial extension of vector bundles.

It is worth noting that this collection of coherent sheaves is different to those constructed in [Kap83| by applying
Schur functors to 7. Utilising the characteristic p quantization methods developed in [Kal06; |BK07] and applied
to the Coulomb branch setting in [Web19a], we argue the following result:

2While the proof of this statement makes use of quantization in characteristic p, the result holds in characteristic 0.
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Theorem 1 ([SW24]). The coherent sheaf on T*Gr(2,4) given by

1s a tilting generator that realises the derived equivalence .

3.2 ASSOCIATED VARIETY OF Vi(psl(N|N)) & 3d SQED HIGGS BRANCH

In [F'S24], we verified Conjecture for the case of SQED with N > 2 hypermultiplets. To accomplish this we proved
the following two theorems:

Theorem 2 ([FS24]). The boundary VOA for the A-twist of 3d SQED is
Va=H5 (gl gly, Sy @ be™) = Ly (psl(N|N)).
Theorem 3 ([FS24]).
X, (pst(NIN) & Omin(sI(N)).

The first theorem involved identifying the BRST reduction with the simple quotient of V!(psl(N|N)). This
was achieved using free field realizations of the BRST cohomology provided in [Bal+23| and results expressing
Li(ps{(N|N)) as a simple current extension of Ly (s{(N)) ® L_1(sl(IV)) [AM18; |Ada+19; |CY21).

The second theorem identifies the associated variety of the boundary VOA with the closure of the minimal nilpo-
tent orbit of sI(N). We accomplished this by identifying a singular vector in V! (psl(N|N)) generating the maximal
submodule of the even subalgebra V(sl(N)) @ V~1(sl(N ))E| The associated variety of this subalgebra was shown
to be the closure of the sheet containing the minimal nilpotent orbit as a codimension 1 subvariety |[AM19b]. We
demonstrated that the new singular vector also generated elements in the Zhu Cs-algebra corresponding to the
functions vanishing on Ou,i, (s[(N)) but not the sheet.

4 CURRENT WORK

4.1 DEFORMED BOUNDARY VOAS

In collaboration with Andrea Ferrari and Christopher Beem, we are investigating deformations of the A-twist for
3d SQED by a flat connection. Considering deformations of the BRST differential by a scalar leads us to conjecture
the following:

Conjecture 3. Let A € C be the deformation parameter for the BRST differential, u be the associated moment
map and denote by VAA the boundary VOA for the A-twist of 8d SQED. Then

Xya = () ) C
which is the Higgs branch of the deformed theory.

When A = 0, we recover the result of [FS24]. Another aspect of this work is to understand the category of
ViA-modules corresponding to line operators of the deformed theory. The structure of this module category is
simpler in the deformed case and this should be reflected in the Coulomb branch algebra. Preliminary results lead
us to conjecture:

Conjecture 4. For an abelian theory with A # 0, the category of V/\A -modules Cf is semisimple.

The proof of this statement appears to follow from the construction given in [Bal+23| for C* as an induction
(or gauging) of the Sy-module category Cg,. The ungauged category has a block decomposition with respect to
generalized eigenvalues of the current operator:

Corn = P Corn-

A\eC/Z

The gauged cateogry C4 is the image of the subcategory of monodromy free objects Csy under an induction func-
tor. In the undeformed case this source subcategory lies within Cg 0 which contains so-called “atypical” modules
which have interesting non-trivial extensions. In the deformed case the source category is a “typical” block whose

31 conjecture that this submodule is maximal and am looking to prove this and other generalizations in future work.
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non-trivial extensions are removed by the monodromy condition.

One motivation for studying these deformations relates to the mirror symmetry between the derived endomorphism
algebra and the Zhu Cs-algebra. On one hand, the Cy-algebra of V4 describes the Higgs branch of the theory
and provides information regarding finiteness properties for V4. On the other hand, the derived endomorphism
algebra of V4 describes the Coulomb branch and provides information regarding extensions of V4. We hope that
investigating deformations where one of these structures becomes particularly simple will elucidate the relationship
between finiteness conditions and extensions for VOAs.

4.2 BOUNDARY VOAS viA CHIRAL QUANTIZATION OF COULOMB BRANCHES

A VOA V is said to be a chiral quantization of a variety X if its associated variety Xy is isomorphic to X [AKM15}
AM19a). This definition raises the following questions:

Question 1. Given a symplectic variety X, when does there exist a VOA V such that Xy = X? How many
non-isomorphic chiral quantizations does a given X have?

Restricted versions of these questions have been answered in the cases where V is given by taking CDOs or the
CDR complex of Y where X = T*Y. In the case of CDOs the second Chern character of Y is an obstruction to the
existence of CDOs on Y [GMS99]. When it exists, CDOs can be constructed analogously to Fedosov quantization
|[GGW20]. For the CDR complex, no such obstruction is present.

A series of papers [AKM15; Kuwl17; [AKM23] constructs CDOs and CDRs on cotangent bundles of flag varieties,
intersections of Slodowy slices with the nilcone, hypertoric varieties and Hiblert schemes. The authors accomplish
these “microlocal chiral quantizations” using sheaves of filtered hi-adic VOAs and exploiting the Poisson geometry
of the associated varieties and their arc spaces.

In another recent paper [BF23b| it was proved that any BFN Coulomb branch is isomorphic to the equivariant
Hilbert scheme of a hypertoric variety. Using the chiral quantizations of hypertoric varieties and Hilbert schemes
given in [Kuwl7; [AKM23| I am working towards proving the following;:

Conjecture 5. Given a BFN Coulomb branch M¢, there exists a sheaf of h-adic VOAs V on M¢e such that the
global sections V- =T(V,M¢) give a chiralization of M.

Here it is expected that V' will be the B-side boundary VOA and a mirror construction could be performed
using the Higgs branch My = M, to construct the A-side boundary VOA. This leads one to conjecture:

Conjecture 6. Letting V' = T'(V, My) and denoting by Ry the Zhu Cy-algebra of V., there are algebra isomorphisms
Extea(V,V) 2 Ry, Ry = Extes (V' VY.

Such a result could provide deep insights into the structure of VOAs appearing in this manner. Once Conjecture
is proved, the construction could also be used to prove Conjectures [I] and [2] as well as to explore the answer
to Question To construct the V' we exploit the distinguished open cover used in [Kuwl7] to construct chiral
quantizations of hypertoric varieties and transport these sheaves of h-adic VOAs to the equivariant Hilbert scheme
of the hypertoric variety.

Another interesting question to consider here is how the derived structure of the Higgs branch is encoded in the
boundary VOA. I am looking to understand this by computing the Zhu Cs-algebra at the level of BRST cochains
and checking the resulting dg structure is correct.

5 FUTURE WORK

In this section, I will outline some ideas for future research making use of the mathematical tools used in my prior
work.
5.1 QUANTUM COHOMOLOGY FROM THE CHIRAL DE RHAM COMPLEX

In [FLOG] the authors explore (2d) mirror symmetry for toric varieties using an intermediate “I-model” in addition
to the usual A and B-models. Their method may be roughly surmised as showing the equivalenceﬂ of the A and

4The equivalence between the A and I-models is as conformal field theories (that is the correlation functions of both theories agree),
but the equivalence between the I and B-model is more subtle.
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B-models to the I-model, rather than demonstrating mirror symmetry between the A and B-models directly. While
the physical arguments made are quite general, the utility of the I-model has not been widely explored mathemat-
ically outside of the case of toric varieties.

It was shown |[FLO6| that the I-model on a toric variety X comes equipped with a family of g-deformed differ-
entials d(q)ﬂ For ¢ # 0 it was shown that the d(g)-cohomology is the quantum cohomology of X, while the
d(0)-cohomology produces the CDR complex of X [MS00]. The goal of this project would be to investigate the
following:

Question 2. For what symplectic varieties X can the quantum cohomology of X be expressed as the the q-deformed
comhology of the CDR complex of X ¢

The algebra of operators for the theories in studied in [FLO6| are expressed using an algebraic structure that can
be thought of as a VOA with “mixed” chiral and anti-chiral parts. Such objects have not to my knowledge been
studied widely outside of a few cases |[KOO03] and it is possible that re-framing these structure in the language of
factorization algebras of observable as described in [CG16] would be a fruitful approach to generalizing this story
for more general symplectic varieties.

5.2 CHIRAL KOSZUL DUALITY AND TWISTED HOLOGRAPHY

Koszul duality is a well-known duality between algebras as well as their module categories, most famously known for
exchanging symmetric and exterior algebras and exchanging universal enveloping algebras of Lie algebras with their
Chevalley-Eilenberg complex. In more recent years, Koszul duality has found applications in QFT, particularly in
the study of defects.

An overview of how Koszul algebras can describe defects in quantum theories is given in [PW23| and I will briefly
outline the explanation presented there. Consider a system with an algebra of local operators A and product given
by the OPE along a line Lﬂ Suppose you also have a quantum mechanical system on L with algebra of observables
B. The tensor product A ® B can be interpreted as the uncoupled algebra of the combined system on L, while a
coupling is a choice of map

po:A' > B

where A' denotes the Koszul dual of A. This statement is equivalent to saying that that ¢ satisfies the Maurer-
Cartan equation. Physically we can interpret this to mean that the Koszul dual A' is the algebra of the universal
line defect on L and a choice of coupling ¢ determines a twisted tensor product A®, B describing the coupled system.

Physically, we are interested in generalizing this story. For example, now suppose that L is a complex line and the
theory is holomorphic on L. The algebra of operators will now form a VOA V and we expect the universal defect on
L to be given by a chiral Koszul dual V'. Unfortunately Koszul duals have not been defined in general for VOAs.
Mathematically, one can see why this is in two ways. The first is that in the case of associative algebras, Koszul
duals can be defined by taking qutoients of a free algebra, in this case the tensor algebra. However a notion of free
VOA does not exist since the locality axiom cannot be expressed as a finite set of identities [Roi01]. Another way
to view the issue is that is VOAs are not algebras over an operad, rather they are modules over a partial operad
[HL93| and so Koszul duality for operads also fails to solve the problem.

Despite this, physical expectations show us that computing the Maurer-Cartan elements of certain VOAs pro-
duces the correct structures and in |[GLZ22] a definition of Koszul duality for chiral algebras defined by quadratic
data is given. The goal for this project is to construct new examples by looking at deformations and BRST reduc-
tions of known examples. Doing this will provide information about the general structure and properties of chiral
Koszul duality, as well as providing new examples for use in physics. In particular, chiral Koszul duality is expected
to play a role in the twisted and celestial holography programs |[CP21; (CP22].
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